Laminar Flame Characteristics of C1–C5 Primary Alcohol-Isooctane Blends at Elevated Temperature

نویسندگان

  • Qianqian Li
  • Zuohua Huang
چکیده

Abstract: The laminar combustion characteristics of blends of isooctane and C1–C5 primary alcohols (i.e., methanol, ethanol, n-propanol, n-butanol and n-pentanol) were investigated using the spherical expanding flame methodology in a constant volume chamber at various equivalence ratios and volume fractions of alcohol. The stretch effect was removed using the nonlinear methodology. The results indicate that the laminar flame speeds of alcohol-isooctane blends increase monotonously with the increasing volume fraction of alcohol. Among the five alcohols, the addition of methanol is identified to be the most effective in enhancing laminar flame speed. The addition of ethanol results in an approximately equivalent laminar flame speed enhancement rate as those of n-propanol, n-butanol and n-pentanol at ratios of 0.8 and 1.5, and a higher rate at 1.0 and 1.2. An empirical correlation is provided to describe the laminar flame speed variation with the volume fraction of alcohol. Meanwhile, the laminar flame speed increases with the mass content of oxygen in the fuel blends. At the equivalence ratio of 0.8 and fixed oxygen content, similar laminar flame speeds are observed with different alcohols blended into isooctane. Nevertheless, with the increase of equivalence ratio, heavier alcohol-isooctane blends tend to exhibit higher values. Markstein lengths of alcohol-isooctane blends decrease with the addition of alcohol into isooctane at 0.8, 1.0 and 1.2, however they increase at 1.5. This is consistent with the behavior deduced from the Schlieren images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemical Kinetic Uncertainty Minimization through Laminar Flame Speeds of Mixtures of Air with C1-C4-Hydrocarbons

Performing high-fidelity simulations of complex reacting flows requires that the uncertainties associated with predictions of fundamental flame properties are characterized and minimized. Although the kinetics of C1-C4 hydrocarbon flames have been studied extensively in numerous past investigations, notable uncertainties exist. In the present study, the types of hydrocarbon fuels with the great...

متن کامل

Experimental determination of counterflow ignition temperatures and laminar flame speeds of C2–C3 hydrocarbons at atmospheric and elevated pressures

Experimental data were acquired for: (1) the ignition temperatures of nitrogen–diluted ethylene and propylene by counterflowing heated air for various strain rates and system pressures up to 7 atm; (2) the laminar flame speeds of mixtures of air with acetylene, ethylene, ethane, propylene, and propane, deduced from an outwardly propagating spherical flame in a constant-pressure chamber, for ext...

متن کامل

Laminar Flame Speed Prediction in Lean Mixture of Aluminum Dust Clouds by Considering the Effect of Random Distribution of Particles in Two-dimension

        In the present study, the effect of random distribution of reactants and products on laminar, 2D and steady-state flame propagation in aluminium particles has been investigated. The equations are solved only for lean mixture. The flame structure is assumed to consist of a preheat zone, a reaction zone and a post flame zone. It is presumed that in the preheat zone particles are heated an...

متن کامل

Spherically symmetric droplet combustion of three and four component miscible mixtures as surrogates for Jet-A

This study examines the droplet combustion characteristics of three and four component miscible liquid mixtures and compares the results with an aviation fuel (Jet-A) burning under the same conditions. The configuration used in the comparison is the base case of spherical symmetry whereby the droplet and flame are spherical and concentric. Mixtures consisting of n-decane/iso-octane/toluene and ...

متن کامل

PSFC-JA-08-10 Benchmarking of Alcohol Chemical Kinetic Mechanism for Laminar Flame Speed Calculations

Methanol and ethanol have been investigated as very high octane fuels for knock control/avoidance in spark ignition engines. Direct injection of the alcohol results in substantial cooling of the cylinder charge, decreasing the chemical kinetic rates that result in autoignition. However, decreasing the temperature of the cylinder charge also affects the initial flame propagation. The purpose of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016